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Abstract

Background: For many genes, RNA polymerase II stably pauses before transitioning to productive elongation.
Although polymerase II pausing has been shown to be a mechanism for regulating transcriptional activation, the
extent to which it is involved in control of mammalian gene expression and its relationship to chromatin structure
remain poorly understood.

Results: Here, we analyze 85 RNA polymerase II chromatin immunoprecipitation (ChIP)-sequencing experiments
from 35 different murine and human samples, as well as related genome-wide datasets, to gain new insights into
the relationship between polymerase II pausing and gene regulation. Across cell and tissue types, paused genes
(pausing index > 2) comprise approximately 60 % of expressed genes and are repeatedly associated with specific
biological functions. Paused genes also have lower cell-to-cell expression variability. Increased pausing has a
non-linear effect on gene expression levels, with moderately paused genes being expressed more highly than other
paused genes. The highest gene expression levels are often achieved through a novel pause-release mechanism
driven by high polymerase II initiation. In three datasets examining the impact of extracellular signals, genes
responsive to stimulus have slightly lower pausing index on average than non-responsive genes, and rapid gene
activation is linked to conditional pause-release. Both chromatin structure and local sequence composition near the
transcription start site influence pausing, with divergent features between mammals and Drosophila. Most notably,
in mammals pausing is positively correlated with histone H2A.Z occupancy at promoters.

Conclusions: Our results provide new insights into the contribution of RNA polymerase II pausing in mammalian
gene regulation and chromatin structure.

Background
The initiation of RNA polymerase II (RNAP2) is a highly
regulated process in mammalian cells [1, 2]. A wide var-
iety of proteins, from general transcription factors to
chromatin remodelers, interact with and mediate the ac-
tivity of RNAP2, as it binds a promoter, initiates tran-
scription, and begins to elongate. After RNAP2 enters
early elongation, it pauses about 20–60 bp downstream
from the transcriptional start site (TSS) [1–3]. This

promoter-proximal pausing of RNAP2 (“RNAP2 paus-
ing”) is increasingly recognized as an important step in
regulating gene expression [1]. RNAP2 pausing is in-
duced by the binding of negative elongation factor
(NELF) and DRB-sensitivity inducing factor (DSIF) to
RNAP2. Paused RNAP2 remains stable until it is released
from its paused state by positive transcription elongation
factor b (P-TEFb), a complex that includes cyclin-
dependent kinase 9 (CDK9). P-TEFb triggers paused
RNAP2 to enter productive elongation by phosphorylating
serine 2 on the C-terminal domain of RNAP2 and remov-
ing NELF [1, 2]. For at least a subset of metazoan genes,
RNAP2 pausing is a rate-limiting step in transcription and
this additional regulatory layer represents a paradigm shift
in our understanding of gene transcriptional regulation,
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since RNAP2 initiation has long been viewed as the main
determinant of gene transcription [1].
However, the relationship between RNAP2 pausing

and the regulation of chromatin structure and gene ex-
pression is poorly understood [1]. Several studies have sug-
gested that RNAP2 pausing-release mediates rapid gene
expression changes in response to external stimuli [1, 4, 5].
But, in fact, many other genes in addition to the rapid
response genes display significant promoter-proximal
RNAP2 accumulation [1, 6–8], suggesting additional regu-
latory roles for stable RNAP2 pausing. On the other hand,
recent reports suggest that stably paused RNAP2 shapes
the chromatin structure of promoters [9–11], but the ex-
tent that RNAP2 pausing regulates chromatin remodeling
across mammalian cell types has not been carefully ex-
amined. With advances in profiling various histone
modifications, chromatin-bound proteins, and genome-
wide expression levels in an unbiased manner, a broad,
in-depth analysis of such data would better highlight
and refine the role RNAP2 pausing has on regulating
gene expression and chromatin structure in mammals.
In order to better refine the roles of RNAP2 pausing

on regulating gene expression and chromatin structure,
we performed a comprehensive analysis of promoter-
proximal RNAP2 accumulation across multiple mamma-
lian cell types using publicly available RNAP2 chromatin
immunoprecipitation (ChIP)-sequencing (ChIP-seq) and
related datasets (e.g. from the ENCODE project). This
allowed us to generalize previous observations from spe-
cific cell types as well as to have a greater power to de-
tect correlation structure between promoter-proximal
RNAP2 accumulation and gene expression or chromatin
structure. We found that, for many genes, there is recur-
rent enrichment or depletion of promoter-proximal
RNAP2 across cell types, and that the DNA sequences at
promoters are likely to contribute to this phenomenon.
While promoter-proximal RNAP2 accumulation did not
strongly predict steady-state gene expression levels, it low-
ered gene expression variability across a cell population
and mediated rapid gene upregulation in response to
extracellular cues. Finally, we found that the density of
H2A.Z at promoters correlated positively with higher
amounts of paused RNAP2 in mammalian cells, contrary
to the negative correlation observed in Drosophila [12].
Overall, our computational analysis provides new insights
into the contribution of RNAP2 pausing to global regula-
tion of gene expression in mammalian cells.

Results
Characterization of RNAP2 pausing across multiple cell
types
We analyzed RNAP2 pausing at each gene based on its
“Pausing Index” (PI; also referred to as “Traveling Ratio”)
[1, 7, 8, 13, 14]. PI has been used previously as a proxy for

the level of promoter-proximal RNAP2 pausing at a gene
[8, 13–15] and is defined as the ratio between the amount
of RNAP2 that accumulates near the promoter (predom-
inantly paused RNAP2 [9]) and the amount of RNAP2
found in the remainder of the gene (predominately elong-
ating RNAP2), as shown in Fig. 1a. To measure the occu-
pancy of RNAP2, we used RNAP2 ChIP-seq data.
Although RNAP2 ChIP-seq is less sensitive than other
techniques designed specifically for measuring paused
RNAP2, such as GRO-seq (global run-on sequencing) [15]
or PRO-seq (precise run-on sequencing) [3], a comparison
between GRO-seq and RNAP2 ChIP-seq data suggested
that most signals observed in RNAP2 ChIP-seq data come
from transcriptionally engaged RNAP2 [9], supporting
their use for measuring differences in RNAP2 pausing.
Importantly, a large amount of RNAP2 ChIP-seq data is
publicly available, allowing us to analyze RNAP2 pausing
across a wide range of human and mouse cell types.
Operationally, we estimated a PI as the ratio of nor-

malized RNAP2 ChIP-seq read density within the TSS
region (TSSR, –50 to +300 bp around TSS) to that in
the gene body (TSS + 300 bp to +3 kb past the annotated
transcriptional end site (TES); Fig. 1a and Additional file
1: Figure S1; see “Methods”). To remove noise from
genes with low transcriptional activity, those genes with
RNAP2 and H3K4me3 TSSR density below specified
thresholds were excluded from further analyses in that
cell type (see “Methods”). For genes with multiple anno-
tated TSSs, we assigned the TSS having the strongest
H3K4me3 signal as its primary TSS (see “Methods”).
Our estimated PI values correlated well across biological
replicates even when different RNAP2 antibodies were
used (Additional file 1: Figure S2A, B). Furthermore, two
independent markers of RNAP2 elongation, H3K36me3
and RNAP2 phosphorylated on serine 2 of its C-
terminal repeat domain (RNAP2 pS2), strongly corre-
lated with our gene body RNAP2 density estimates
(Additional file 1: Figure S2C, D), indicating that we
quantified elongating RNAP2 accurately.
We used PI to examine how RNAP2 pausing at a gene

relates to its other properties, such as biological func-
tion, expression level, and local chromatin structure. We
first assessed the prevalence of pausing across 64 human
and 24 mouse RNAP2 ChIP-seq datasets spanning mul-
tiple cell lines and tissue types (Additional file 2: Table
S1). We considered a gene to be paused if PI >2 (i.e. at
least twofold more paused RNAP2 compared to elongat-
ing RNAP2), as was done in previous studies [8, 13, 14].
At this threshold, RNAP2 pausing was widespread: genes
with a PI >2 accounted for 33 ± 4 % and 46 ± 7 % of
RefSeq annotated genes for the human and mouse sam-
ples, respectively (Fig. 1b and Additional file 1: Figure
S3A). The paused genes were also consistent across cell
types: among the genes with a PI >2 in any cell type,
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more than half had a PI >2 in >75 % of cell types, both
for human and mouse (Additional file 1: Figure S3B).
Moreover, the underlying cell type or state (e.g. of em-
bryonic, adult, or cancerous origin) appeared to have lit-
tle impact on whether a gene was paused at steady-state.
Given the consistency of how promoter-proximal

paused RNAP2 was deployed across cell types, we
wanted to understand whether any biological functions
were enriched with genes that tended to have more or
less paused RNAP2. Accordingly, we searched across cell
types for biological functions commonly enriched in
genes with higher or lower amount of pausing, defined
as the top or bottom 25 % of genes by PI. Among the
Gene Ontology (GO) biological process (BP) terms
found in each cell type (Fig. 1c, Additional file 1: Figure
S3C, and Additional file 3: Table S2; see “Methods”),
many were enriched across many cell types. Genes with
high PI were enriched for GO terms involving cellular
metabolism, DNA repair, protein localization, and cell

cycle; those with low PI were enriched for developmental,
apoptosis, and cell signaling terms (Fig. 1c, Additional
file 1: Figure S3C, and Additional file 3: Table S2). To
ensure robustness of our results, we repeated the en-
richment analysis based on the rank of each gene (me-
dian PI across cell types) and found that many GO
terms were maintained. These analyses indicate that
some functional classes of genes share RNAP2 pausing
properties across cell types, perhaps reflecting shared
gene regulatory mechanisms.
This consistency across diverse cell types led us to

consider whether common genomic features may regu-
late this phenomenon. In particular, we focused on iden-
tifying DNA sequence patterns enriched in promoters
(+/–500 bp of the TSS) of paused genes. Genes with a PI
>2 in at least one cell type (see “Methods”) tended to
have a significantly higher promoter GC and CpG con-
tent relative to unpaused genes (PI <2 in all cell types
examined; Additional file 1: Figure S4A), consistent with
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Fig. 1 Overview of paused genes across multiple human and mouse cell types. a Estimation of a gene’s “pausing index” (PI) from RNAP2
ChIP-seq data. b Occurrence of paused genes across cell types. The frequency of paused genes (PI ≥2) was similar in diverse human and mouse
cell types. c Functional annotations enriched among the most or least paused genes in human cell lines. The top quartile of genes by PI rank had
similar GO biological process term enrichment across both normal and cancer cell types, as did the bottom quartile. Similar enrichments were
observed when considering genes with pausing greater than (“high average PI”) or less than (“low average PI”) the median PI across all cell types.
d Sequence composition analysis of gene promoters. All DNA 6-mers were tested for enrichment in human paused promoters versus non-paused
promoters. Each 6-mer was ranked by its enrichment score (see “Methods”). Human paused promoters were over-represented for 6-mers with high GC
and CpG content and depleted for the TATA motif
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a previous report in a single cell type [15]. Motif analysis
revealed that paused promoters were enriched for motifs
with high GC and CpG content and depleted for the
TATA motif (Fig. 1d and Additional file 1: Figure S4B).
Together, these results suggest that the composition
of promoter sequence influences promoter-proximal
RNAP2 pausing across a diverse set of mammalian
cell types.

Differential levels of paused RNAP2 dampen cell-to-cell
expression variability
We analyzed the relationship between the degree of
RNAP2 pausing at a gene and its transcript levels by
comparing PI with RNA-sequencing (RNA-seq) mea-
surements across five mammalian cell lines (see

“Methods”). First, in each cell type, the majority of
expressed genes (FPKM >1) were paused (Fig. 2a), sup-
porting the idea that genes with paused RNAP2 are
often expressed [1]. Next, whereas the density of total
RNAP2 binding across the whole gene is well correlated
with its gene expression level (for GM12878, Spearman
correlation r = 0.531), PI was only weakly correlated
(Spearman r = 0.179). Using a cubic smoothing spline to
fit the data, we observed a “hill-shaped” trend between
PI and gene expression, with genes with a high or low PI
having a lower average expression than those with an
intermediate PI, across all five cell types (Fig. 2b, c and
Additional file 1: Figure S5). This weak correlation be-
tween PI and expression level is consistent with prior
studies in a single cell type [14, 16] and the non-linear

A B C

D

Fig. 2 Paused genes have lower cell-to-cell expression variability than non-paused genes. a Paused genes comprised the majority of expressed
(FPKM >1) genes in each cell type. E, expressed genes (FPKM >1); A, All Refseq genes. (***p <0.001, Mann–Whitney U test). b “Hill-shaped” relationship
between gene expression and PI in GM12878. We found no linear correlation between the PI and gene expression levels. The broadest range and
strongest level of gene expression occurred at intermediate PI values, while extreme PI values were associated with reduced gene expression. c Similar
“hill-shaped” relationships were observed in the four other cell lines examined, with the hill peak occurring within a similar PI range for 4/5 cell lines.
d Using single cell RNA-seq data for GM12878 [18] and H1 [19], we analyzed the effect of RNAP2 pausing on cell-to-cell gene expression variability. We
measured the coefficient of variation (standard deviation/mean) of gene expression across individual cells, stratified by gene expression quintiles based
on the single-cell population wide mean expression level. We then compared between paused and non-paused genes. For nearly all expression
quintiles in both cell lines, paused genes had lower coefficient of variation on average, suggesting that at the same expression level RNAP2 pausing
dampens expression variability. (***p <0.001, NS, not significant; Mann–Whitney U test.)
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relationship suggests that too little release of paused
RNAP2 (high PI) or too little promoter-proximal RNAP2
accumulation (low PI) results in lower expression level.
Since the PI of a gene was only weakly predictive of its

expression level, we hypothesized that RNAP2 pausing
may influence other aspects of gene expression regula-
tion. Notably, it has been suggested that stably paused
RNAP2 reduces gene expression variability across indi-
vidual cells in a population caused by fluctuations in
RNAP2 promoter binding [2]. FISH studies of selected
genes in Drosophila embryos supported this hypothesis
[17]. To test this hypothesis computationally, we exam-
ined single-cell RNA-seq data from GM12878 (EBV-im-
mortalized B-cells) [18] and H1 (human embryonic stem
cells) [19]. To measure variability in expression, we com-
puted the coefficient of variation (CV; ratio of standard
deviation to the mean) in paused and non-paused
expressed genes, with “expressed” defined as mean
FPKM >1 across cells in each sample. Dividing the genes
into five quantiles according to their mean expression
level, we found that paused genes had lower expression
CV in all but the highest expression quantile (Fig. 2d),
even as expression CV decreased with increased expres-
sion levels as previously shown [20]. We note that within
each quantile, the mean population-wide gene expres-
sion was not significantly different between paused and
non-paused groups (Additional file 1: Figure S6). Thus,
our analysis suggests that paused RNAP2 stabilizes gene
expression level across individual cells in a population.

Contribution of RNAP2 pause-release to changes in gene
expression
It has been proposed that a key role for RNAP2 pausing
is to poise some genes for rapid, stimulus-induced acti-
vation [1, 4, 5]. To investigate the applicability of this
transcriptional regulatory mechanism to other physio-
logical cell responses, we analyzed several mammalian
RNAP2 ChIP-seq and matched RNA-seq datasets that
characterize responses to cellular signals. Using our re-
cent vascular endothelial growth factor A (VEGFA)
stimulation time-course data [21], we tested whether
VEGFA regulates angiogenesis-response in HUVECs
through changes in RNAP2 pause-release. We grouped
genes differentially expressed in response to VEGFA
(greater than absolute twofold change in expression
compared to pre-stimulus) into early upregulated, late
upregulated, and downregulated gene sets (Fig. 3a; see
“Methods”). All remaining expressed genes were catego-
rized as non-responsive (see “Methods”).
Similar to the cell lines shown in Fig. 2a, but contrary

to LPS-responsive Drosophila S2 cells [6], the majority
of genes in each responsive set were paused prior to
stimulation (Fig. 3b). Surprisingly, we discovered that,
prior to stimulation, each responsive gene set had a

different distribution of PIs than non-responsive genes,
with generally lower PIs (p <0.001, Mann–Whitney U
test; Fig. 3c and Additional file 1: Figure S7A). To deter-
mine if this observation extended to other stimuli and
cell types, we performed two additional analyses. First,
we identified genes that were responsive to IL-4 stimula-
tion of HUVEC cells from a microarray expression data-
set [22] (see “Methods”). As with VEGFA responsive
genes, these IL-4 responsive genes also had a lower dis-
tribution of PIs than IL-4 non-responsive genes in un-
stimulated HUVECs, based on our baseline (Hour 0)
HUVEC RNAP2 ChIP-seq data (p <0.001, Mann–Whitney
U test; Fig. 3d). Second, we tested whether this observa-
tion extended to a signaling pathway in a different cell
type. We examined IMR90 fibroblasts stimulated for 1 h
with tumor necrosis factor alpha (TNFα) [23] and defined
a set of TNFα-response genes (see “Methods”). We calcu-
lated baseline IMR90 gene PI values from an IMR90
RNAP2 ChIP-seq dataset. Prior to stimulation, TNFα-
responsive genes again had a lower distribution of PIs
than non-responsive genes (p <0.001, Mann–Whitney U
test; Fig. 3e). TNFα primary response genes, the subset of
genes that respond without de novo protein synthesis, like-
wise had a lower PI on average than non-responsive
IMR90 genes (p <0.001, Mann-Whitney U test; Fig. 3f).
Together, these analyses suggest that many stimulus-
responsive genes are paused but tend to have lower PIs
pre-stimulation.
We next asked how changes in RNAP2 pause-release

are accompanied by expression changes over time for
signal-responsive genes. In VEGFA-stimulated HUVECs,
the PI distribution of early upregulated genes shifted left-
wards at 1 h and then shifted back towards their basal
state at 4 and 12 h (for Hour 1 vs. Hour 0, p <0.001,
Mann–Whitney U test; Fig. 3g). This suggests that
VEGFA stimulates a transient increase in RNAP2 pause-
release at early upregulated genes, which coincides with
the temporal expression profile of these genes. The late
upregulated, downregulated, or non-responsive genes did
not have a similar shift of PI distribution (Fig. 3h and
Additional file 1: Figure S7B, C). We observed a similar PI
shift for early-responsive genes in IMR90 cells stimulated
by TNFα. The PI distribution of genes upregulated 1 h
after TNFα treatment shifted leftward at the same time
point (p <0.001, Mann–Whitney U test; Additional file 1:
Figure S7D). These data suggest that signal-induced
RNAP2 pause-release participates in rapid stimulus-
induced gene upregulation but may be less prevalent
among genes with slower signal responses.
To further test the role of increased pause-release for

VEGFA-induced gene expression changes, we measured
the effect of flavopiridiol (FP), an inhibitor of the P-
TEFb pause-release complex, on selected early and late
responsive genes. Treatment of HUVECs with FP
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dramatically suppressed the VEGFA-induced upregula-
tion of early-responsive genes at 1 h (Fig. 3i, see
“Methods”), but with much less effect at 4 and 12 h. FP
treatment also suppressed the activation of some late-
responsive genes at 4 and 12 h (Fig. 3i), although it is
unclear whether this effect is solely a consequence of FP
treatment or is secondary to disrupted activation of early
upregulated genes. Overall, our analyses suggest that
RNAP2 pausing selectively regulates rapid activation of
transcription in response to stimuli.

High RNAP2 TSSR density is associated with increased
pause-release
To further explore the relationships among RNAP2 pro-
moter density, RNAP2 gene body density, and gene ex-
pression, we plotted the RNAP2 densities at TSSR and
gene body region (GBR) of each gene on the two axes
(in the log-scale) and colored each point by its expres-
sion level (Fig. 4a, b). On this graph, the PI of a gene is
constant along a diagonal line since it reflects the ratio
between TSS and gene body RNAP2 density (Fig. 4a, b).
Taking GM12878 as an example, we observed a wide
range of expression levels along a diagonal line, consist-
ent with our previous analysis (Fig. 2b). Next, we sought
to determine if increased initiation of RNAP2 (large x
values) led to increased RNAP2 elongation (large y
values). After using a cubic smoothing spline to model
the trend between TSSR and GBR RNAP2 density, we
observed an interesting biphasic relationship (Fig. 4b,
red line). Across low and intermediate TSSR RNAP2
densities, the average GBR RNAP2 curve was relatively
flat, suggesting that most promoter-proximal RNAP2
that accumulates likely remains paused at the TSS. How-
ever, at a high TSSR RNAP2 density, there was a large
inflection point in the trend curve (Fig. 4b, arrow), past
which the slope of the line increased. This indicates that
on average a greater fraction of the promoter-proximal
RNAP2 undergoes pause-release and enters the gene
body. The same biphasic trend line was observed in the
other four cell lines we analyzed (Fig. 4c and Additional
file 1: Supplementary Figure S8A), suggesting that this
pattern may hold across a range of mammalian cell
types. We explored what common functional and ex-
pression properties genes past the inflection point have

across cell types. As expected, genes to the right of the
inflection point were more enriched for highly expressed
genes (FPKM >1000; Fig. 4d). Additionally, a number of
GO biological process terms were enriched for genes
past the inflection point, such as for gene expression,
biosynthetic processes, and translation (Fig. 4e).
To understand what proteins might regulate this

switch at the inflection point, we investigated some pro-
teins known to regulate RNAP2 pause-release. NELF
stimulates RNAP2 pausing, whereas the P-TEFb com-
plex, containing CDK9 and CCNT2 subunits, stimulates
RNAP2 pause-release [1]. Examining NELF TSSR occu-
pancy in K562 cells, we find that it is strongly correlated
with RNAP2 TSSR density but not with gene body dens-
ity or PI (Additional file 1: Figure S8B), consistent with
prior reports [11, 14]. Repeating this analysis on P-TEFb
components CDK9 and CCNT2 revealed that their pro-
moter occupancy is likewise strongly correlated with
TSSR RNAP2 density but not to gene body RNAP2
density or PI, with the strongest signal occurring to the
right of the inflection point (Fig. 4f and Additional file 1:
Figure S8C). Hence, P-TEFb and NELF appear to be re-
cruited to promoters as promoter-proximal RNAP2 ac-
cumulates but is not significantly affected by RNAP2
gene body entry or pause-release. These observations
suggest that pause-release is regulated at the level of P-
TEFb or NELF activity, rather than their recruitment.
Furthermore, the promoter occupancy pattern of P-
TEFb and NELF suggest that they are appropriately posi-
tioned to modulate RNAP2 GBR entry at high TSSR
RNAP2 density.
To further investigate the involvement of P-TEFb and

NELF in modulating RNAP2 gene body density, we ex-
amined available datasets where RNAP2 ChIP-seq was
performed in cells treated with NELF siRNA or P-TEFb
inhibitors. Treatment with the P-TEFb inhibitor FP in
both mouse ES [14] (mES) and human IMR90 fibro-
blasts [23] flattened the steeper portion of the trend line
to the right of the inflection point (Fig. 4g). Since P-
TEFb is required for pause-release [1, 2], it is expected
that loss of P-TEFb should affect the trend curve as ob-
served. Comparatively, inhibition of BRD4 and ELL3,
both of which promote RNAP2 pause-release by modu-
lating P-TEFb activity, or inhibition of NELF did not

(See figure on previous page.)
Fig. 3 RNAP2 pause-release in signal-induced gene expression. a VEGFA-stimulated changes in gene expression in HUVECs [21]. VEGFA-responsive
genes were clustered into three groups by the temporal pattern of their VEGFA-induced expression change (see “Methods”). b Both the responsive
and non-responsive (genes expressed during the time course without a significant change) gene sets had RNAP2 pre-loaded and paused prior to
VEGFA-stimulation. c–f Genes responsive (red line) to VEGF (c), IL4 (d), or TNFα (e, f) overall had lower PI compared to genes non-responsive (black line)
to each stimulus. “Primary responsive genes” (f) were defined as those that respond in the presence of the protein synthesis inhibitor cycloheximide
(***p <0.001; Mann–Whitney U test.) g, h VEGFA rapidly induced overall pause-release among early upregulated genes (g) but not late upregulated
genes (h). i Pause-release is required for rapid signal-induced gene expression. Treatment of HUVECs with pause-release inhibitor FP markedly
attenuated VEGFA activation of early upregulated genes. FP had more moderate effects on VEGFA activation of late upregulated genes
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Fig. 4 High RNAP2 TSSR density triggers increased RNAP2 gene body density. a, b Scheme to visualize a gene’s RNAP2 density by its TSSR and
gene body density and a third variable, such as gene expression. PI is shown by the gene’s position along indicated diagonals. a Schematic plot
of one gene, colored by its expression level. b All genes in GM12878. A smoothed spline mean trend line between RNAP2 TSSR and gene body
density showed a biphasic slope, with an inflection point (pink arrow) and higher slope at high RNAP2 TSSR density. The steeper portion of the
trend line suggested that high TSSR RNAP2 density enhanced RNAP2 gene body density. c Mean trend lines for five different cell types. A biphasic
trend line with an inflection point at high RNAP2 TSSR density was a common feature of all cell lines. d Highly expressed genes (FPKM >1000)
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inflection point or the steeper portion of the mean trend line
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influence the biphasic trend line (Fig. 4h and Additional
file 1: Figure S8D). Increased pause-release at high TSSR
RNAP2 density was not likely to result from RNAP2
promoter saturation, since RNAP2 promoter binding
could be further increased by FP treatment (Additional
file 1: Figure S9). Thus, P-TEFb links high TSSR RNAP2
density to enhanced RNAP2 pause-release, but other
components involved in RNAP2 pausing regulation,
such as BRD4, NELF, and ELL3, are dispensable for this
effect.
Together, our analyses support a non-linear relation-

ship between RNAP density at TSS and gene body, with
the increased pause-release triggered at high RNAP2
TSS density mediated by P-TEFb activity.

Promoter H2A.Z deposition increases with RNAP2 pausing
As many chromatin remodelers associate with RNAP2
[1], the location of RNAP2 can lead to local chromatin
remodeling. Since differences in RNAP2 pausing would
change the duration of RNAP2 at the promoter of a
gene, we hypothesized that differential rates of RNAP2
pausing may be associated with different chromatin fea-
tures at a promoter. Consistent with previous reports [9,
11], paused genes (PI >2) had greater nucleosome deple-
tion than non-paused genes (Additional file 1: Figure
S10A). Nevertheless, paused genes maintained strong
nucleosome signatures near the TSS. Therefore, we fur-
ther investigated the relationship between chromatin
features with PI using a multi-dimensional linear model
(Fig. 5a and Additional file 1: Figure S11A). This model-
ing controlled for potential cofounding effects of correl-
ation between individual chromatin features. The
estimated coefficients from the model showed either in-
consistent or weak coefficients for each chromatin mark
except one: H2A.Z (Fig. 5a and Additional file 1: Figure
S11A), a H2A histone variant essential for lineage com-
mitment and embryonic development [24]. This rela-
tionship held even when we included the gene
expression levels as a variable within the linear model
(Additional file 1: Figure S11A). This was surprising be-
cause H2A.Z was found to be anti-correlated with
RNAP2 pausing in Drosophila [12, 25]. Examination of
the distribution of H2A.Z around the TSS showed that
its focal occupancy at the –1 and +1 nucleosome posi-
tions positively correlated with increasing PI (Fig. 5b).
H2A.Z deposition more strongly correlated with PI than
with TSSR or gene body RNAP2 density (Fig. 5c), unlike
what was observed for P-TEFb or NELF TSS occupancy
(Additional file 1: Figure S8A, B). H3.3, another histone
variant that occupies the TSS of expressed genes [26],
poorly correlated with PI (Fig. 5d), suggesting that
RNAP2 pausing is associated with incorporation of spe-
cific histone variants. Finally, analysis of an existing
dataset on the effect of H2A.Z depletion on nucleosome

density [24] as a function of PI provided independent
support for a positive correlation between H2A.Z occu-
pancy and PI. Since H2A.Z destabilizes nucleosomes,
H2A.Z depletion should increase nucleosome density. If
H2A.Z occupancy correlates with PI, then this increase
of nucleosome density would be expected to be greater
at genes with higher PI. Our analysis of nucleosome
density in murine ES cells treated with H2A.Z siRNA
[24] was consistent with this expectation (Additional file
1: Figure S10B). Taken together, these data show that
H2A.Z positively correlated with RNAP2 pausing in
mammalian cells.
To further determine whether H2A.Z regulates

RNAP2 pausing in mammalian cells, we knocked down
H2A.Z with siRNA in MCF7 breast cancer cells and
measured RNAP2 occupancy by ChIP-seq (Additional
file 1: Figure S11B, C; see “Methods”). This analysis
showed that H2A.Z knockdown increased the PI on
average (p <0.001, Mann–Whitney U test; Fig. 5e), sug-
gesting that H2A.Z antagonizes RNAP2 pausing. This
result was surprising given the positive correlation be-
tween RNAP2 pausing and H2A.Z, but consistent with
studies in Drosophila that demonstrated H2A.Z antago-
nizes RNAP2 pausing, likely by destabilizing nucleo-
somes that impede RNAP2 elongation [12].
To better understand the mechanism by which H2A.Z

depletion in MCF7 increased PI, we analyzed the change
in RNAP2 density at TSSR and gene body (Fig. 5f ).
Among genes with greater than twofold change in either
category, RNAP2 density either increased in the TSSR or
diminished in the gene body, but rarely both (Fig. 5f ).
Interestingly, the subset that decreased gene body
RNAP2 density upon H2A.Z depletion was distinguished
by a significantly lower baseline PI compared to all genes
or the subset with increased TSSR RNAP2 density
(Fig. 5g). These data suggest that H2A.Z likely modu-
lates RNAP2 pausing by at least two mechanisms: one in
which H2A.Z inhibits promoter-proximal RNAP2 accu-
mulation and a second in which H2A.Z stimulates
RNAP2 entry into the gene body.
We asked how the presence of H2A.Z at TSS antago-

nized paused RNAP2 (Fig. 5h) yet positively correlated
with PI (Fig. 5a–d). We hypothesized that paused
RNAP2 accumulation stimulates H2A.Z deposition at
promoters, resulting in a negative feedback loop that
limits further RNAP2 pausing. To test this hypothesis,
we treated MCF7 cells with FP to increase RNAP2 paus-
ing and then measured H2A.Z enrichment at promoters
by ChIP-qPCR. Consistent with our hypothesis, we ob-
served that FP treatment increased H2A.Z enrichment
in general at the test promoters (all promoters together
comparing treated vs. un-treated, p <0.001, t-test;
Fig. 5h). Together our data suggest that H2A.Z destabi-
lizes nucleosomes and antagonizes pausing in mammals,
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consistent with previous reports [12, 24]. Unlike in Dros-
ophila, H2A.Z correlated with RNAP2 pausing in mam-
mals, potentially due to a negative feedback loop in
which pausing increases H2A.Z deposition at promoters.

Discussion
Our approach of analyzing multiple, previously uncon-
nected datasets from diverse mammalian cells and tis-
sues generated novel insights and new directions about
the function of RNAP2 pausing. While many studies
have elucidated mechanisms of pausing and pause-
release generally through biochemical approaches or by
focusing on a particular complex involved in the process
[1, 3, 6, 10, 11, 27–31], we took a more genomic ap-
proach to identify novel functional and regulatory roles
for RNAP2 pausing in mammals that would have been
difficult to find through previous approaches given their
focus. Accordingly, we discovered several previously un-
identified patterns in the genome-wide data with respect
to gene expression and chromatin structure as well as
validated previously observed patterns across many
mammalian cells types.
Our analysis suggested that promoter-proximal

RNAP2 pausing deployment is consistent across cell
types while further highlighting its high prevalence at
mammalian genes. Previous studies of a limited number
of cell types suggested that many mammalian genes tend
to have a paused RNAP2 near their TSS [7, 14, 15]. We
confirmed this observation in our analysis across many
cell types. Furthermore, the degree of RNAP2 pausing at
a gene tended to be consistent across cell types, despite
whether the sample was normal or cancerous. This sug-
gested the promoter sequence may play a role in regulat-
ing RNAP2 pausing since it would be relatively static
across cell types and accordingly we found genes with
increased promoter-proximal paused RNAP2 having
high GC content and under-representation of TATA
motifs. Notably, sequence motifs previously shown to be
enriched in paused Drosophila promoters, such as the
GAGA motif [11, 32, 33], were not enriched in our
mammalian data, identifying species-specific adaptations
in important promoter sequence motifs. In addition,
genes having consistent deployment of RNAP2 pausing
across cell types were recurrently enriched for several
biological function terms, such as cellular metabolism,
DNA repair, protein localization, and cell cycle, while
genes with lower levels of RNAP2 pausing across cell
types were enriched for biological function terms related
to development. Some of these enrichments were re-
cently identified in an analysis of RNAP2 pausing in
mouse embryonic stem cells [34], supporting our results.
It is unclear how genes involved in the same biological
function attain a consistent pattern of stably paused
RNAP2, but one possible mechanism could be that

genes within the same biological function share pro-
moter sequence motifs to regulate the deployment of
stably paused RNAP2. Further experimental dissection
of the promoter sequence will reveal whether certain
DNA motifs can indirectly modulate RNAP2 pausing at
a particular gene.
We studied the relationship between RNAP2 pausing

and steady-state and dynamic gene expression across cell
types. Consistent with previous studies [14, 16],
promoter-proximal RNAP2 pausing was not a strong de-
terminant of a gene’s steady-state expression level. How-
ever, it was previously unnoticed that genes with very
high and low PIs tended to have a lower expression
level, suggesting that a gene having some moderate level
of stably paused RNAP2 can better achieve higher ex-
pression levels. Despite this, RNAP2 pausing appeared
to regulate how a gene was expressed in at least two dif-
ferent ways. First, genes with promoter-proximal RNAP2
pausing tended to have lower cell-to-cell expression vari-
ability in a population of cells of the same type. Earlier
studies using florescent probes against individual genes
in Drosophila embryos suggested RNAP2 pausing may
dampen expression variability caused by recruiting
RNAP2 [2, 17, 27, 29]. Our study provides the first
genome-wide support to this observation and within a
more homogenous cell population than an embryo.
Paused RNAP2 has been proposed to suppress transcrip-
tional noise arising from variability in RNAP2 recruit-
ment to the promoter [2]. Our analysis of the
consistency of RNAP2 pausing across cell types, poten-
tially arising from the importance of the promoter se-
quence, suggests that RNAP2 pausing would likewise be
similar across cells in a population, thereby providing a
consistent buffer against cell-to-cell transcription vari-
ability caused by RNAP2 recruitment. Second, our ana-
lyses provided insights on the roles of RNAP2 pausing in
stimulus-induced gene expression changes. Paused
RNAP2 was broadly deployed at many signal responsive
genes, consistent with a recent study in mouse embry-
onic stem cells [34] and prior work established that
RNAP2 pausing participates in stimulus-responsive gene
expression change [1, 5, 35]. Our study confirmed this
finding and showed that only a subset of stimulus-
responsive genes appears to be driven by dramatic
increases in pause-release. At the other stimulus-
responsive genes with stable paused RNAP2, this paus-
ing likely has an alternative regulatory role, as suggested
by our observation that stimulus-responsive genes had a
lower PI on average than non-responsive genes under
basal (pre-stimulus) conditions. Although further studies
are required to determine the functional significance of
this finding, one possibility is that the degree of
promoter-proximal RNAP2 pausing may modulate a
gene’s inducibility by an external signal. Collectively, our
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studies suggest that RNAP2 pausing modulates gene
expression through several potential mechanisms, with-
out being directly correlated to the magnitude of gene
expression.
We investigated the relationship between a gene’s

RNAP2 density at the TSS and gene body and its occu-
pancy by proteins that regulate RNAP2 pausing and
pause-release. Consistent with previous reports, NELF
promoter occupancy correlated with RNAP2 TSSR dens-
ity [11, 14]. Surprisingly, like NELF P-TEFb promoter
occupancy also correlated more closely with RNAP2
binding at the promoter than its binding in the gene
body or its level of pause-release. This was unexpected
because differential P-TEFb recruitment is thought to be
a mechanism of differentially regulating RNAP2 pause-
release between genes [1]. Our analysis suggests that P-
TEFb recruitment to the promoter is better linked with
increased RNAP2 initiation, and that differential RNAP2
pause-release may be governed by differences in P-TEFb
activity rather than recruitment.
Our analysis revealed a surprising correlation with pause-

release and P-TEFb activity: low to moderate RNAP2 TSS
densities had a similar average level of RNAP2 in the gene
body whereas high RNAP2 TSS density had a dramatic in-
crease in the average RNAP2 entering the gene body. This
apparent increase in pause-release at high RNAP2 TSS
densities was dependent on P-TEFb, but not NELF or the
P-TEFb regulators BRD4 and ELL3. This suggests that
pause-release may be triggered by high rates of RNAP2
initiation through unknown mechanisms, leading to very
high expression levels. Understanding the molecular
mechanism that makes RNAP2 pause-release dependent
on RNAP2 promoter density will require further study of
P-TEFb recruitment and activation.
Finally, we discovered a positive correlation between a

gene’s promoter occupancy by H2A.Z and its PI. This
was surprising since previous reports suggested that
H2A.Z is anti-correlated with RNAP2 pausing in Dros-
ophila [12, 25]. Previously, Rach et al. suggested that,
across species, the deposition of H2A.Z at promoters
may be more linked to their sequence composition than
to their RNAP2 binding [36]. We also observed that pro-
moter sequence composition influences the deployment
of promoter-proximal RNAP2 pausing and hence would
be anticipated to correlate with H2A.Z deposition. Our
analysis does not exclude the possibility that sequence
composition effects contribute to the observed correl-
ation between H2A.Z and PI. However, it is unlikely that
the positive correlation that we observed is solely due to
the influence of promoter sequence composition, as our
perturbation experiments argue that RNAP2 pausing
directly affects H2A.Z deposition.
Our perturbation experiments yielded paradoxical re-

sults: blocking pause-release increased H2A.Z deposition,

yet knocking down H2A.Z increased RNAP2 pausing
genome-wide, suggesting that H2A.Z antagonizes RNAP2
pausing, as observed in Drosophila [12, 25]. One model
that reconciles these data is that there is a negative feed-
back loop between RNAP2 pausing and H2A.Z deposition
where RNAP2 pausing stimulates H2A.Z deposition that
in turn hinders further RNAP2 pausing deployment. Such
a negative feedback loop may help to fine-tune the extent
of promoter-proximal RNAP2 pausing at a gene. Notably,
H2A.Z has been previously implicated in aiding transcrip-
tion by destabilizing nucleosomes and recruiting com-
plexes that facilitate pause-release [12, 24, 37], supporting
a negative feedback loop between these two factors. Add-
itional studies will be needed to further test this hypoth-
esis and to elucidate its molecular underpinnings.

Conclusions
Meta-analysis of 85 human and mouse RNA polymerase
II ChIP-seq datasets have revealed insights into the impact
of polymerase II pausing on gene regulation. These in-
clude prevalence of pausing, its association with specific
biological processes, contributions to reduced expression
variability among individual cells in a population, non-
linear impact on expression level, relationship to rapid
gene activation, and correlation with promoter H2A.Z
occupancy.

Methods
Data collection and processing
Experimental data generation

Cell treatment MCF7 cells were cultured in DMEM
plus 10 % fetal bovine serum. For siRNA knockdown exper-
iments, 10 μM scramble or H2A.Z siRNA (5′-CAGGACU
CUAAAUACUCUATT-3′) (Qiagen) were transfected with
silentFect™ lipid (Biorad). The cells were collected for
western blotting and ChIP 48 h after transfection.
For pause-release inhibition experiments, MCF7 cells

were treated with 500 nM flavopiridol (Sigma) or vehicle
(DMSO) for 2 h and then collected for H2A.Z and his-
tone H3 ChIP-qPCR.

H2A.Z extraction and western blot In total, 2 × 107

MCF7 cells transfected with control or H2A.Z siRNA
were washed once with cold PBS and then lysed with
PBS containing 0.5 % TritonX-100, 2 mM PMSF, 5 mM
sodium butyrate, and protease inhibitors. To extract his-
tones, the pellet was further incubated with 0.4 M
H2SO4 for 2 h at 4 °C.
The extracted protein was separated on a 4–15 %

SDS-PAGE gel, transferred to a PDVF membrane, and
probed with H2A.Z antibody (ab4174, Abcam) or His-
tone H3 antibody (ab1791, Abcam) to detect protein
expression.
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Chromatin immunoprecipitation followed by high-
throughput sequencing (ChIP-seq) The ChIP assay
was executed as described previously [21]. In brief, 50
million MCF7 cells treated with either H2A.Z siRNA or
FP were crosslinked with 1 % formaldehyde for 10 min
at room temperature. Nuclei were extracted with nuclear
extraction buffer (20 mM HEPES-KOH pH 7.5, 10 mM
KCl, 1 mM EDTA, 0.2 % NP40, 1 mM DTT, and 10 %
glycerol) and resuspended in 1 mL sonication buffer
(20 mM Tris-HCl pH 8, 150 mM NaCl, 2 mM EDTA,
0.1 % SDS, 1 % TritonX-100). The chromatin was sheared
in a Misonix Sonicator 3000 and then incubated with
H2A.Z antibody (ab4174, Abcam) or an antibody against
RNAP2 C-terminal domain (05-623, Millipore) for over-
night immunoprecipitation with protein G Dynabeads
(Life Technologies). Beads were then washed with RIPA
buffer (50 mM HEPES-KOH pH 7.5, 500 mM LiCl, 1 mM
EDTA, 1 % NP40, and 0.7 % Na-Deoxycholate).
ChIP-seq library construction was performed with

NEBNext® ChIP-Seq Library Prep Reagent Set (E6200,
New England Biolab) following the protocol in the kit
with some modifications. Size selection after adaptor
ligation was carried out by 2 % agarose gel electrophor-
esis rather by dual clean up with AMPure XP beads.
Libraries were single-indexed PCR primers as we de-
scribed previously [21]. The final pooled indexed librar-
ies were sequenced on a HiSeq2500 (Illumina; 50 nt
single end sequencing). The data are available from GEO
GSE60872 or from the Cardiovascular Development
Consortium server (https://b2b.hci.utah.edu/gnomex/;
sign in as guest).

ChIP-qPCR As described previously [21], immunopre-
cipated DNA and input DNA were amplified with SYBR
master mix (Life Technologies) and quantified on a
CFX96 Real-Time system (Bio-Rad). ChIP enrichment
was calculated by normalization with input and unbound
control regions. Primers used for detection of H2A.Z
signal are documented in Additional file 4: Table S3.

Obtaining publicly available data
We downloaded and collected data from a variety of
sources, include ENCODE (human and mouse). All
datasets used in the analysis and their related GEO ac-
cession numbers are listed in Additional file 2: Table S1.
In general, ChIP-seq datasets were downloaded in
FASTQ format (or SRA format then converted to
FASTQ). RNA-seq samples from ENCODE were down-
loaded in their pre-aligned state as BAM files.
In addition to the list of datasets used, a summary of

all of the cell types analyzed in this study and related ab-
breviations are included in Additional file 2: Table S1 in
a separate spreadsheet tab.

Alignment and processing of RNAP2 and other ChIP-seq
datasets
We aligned each human and mouse ChIP-seq or input
FASTQ file to hg19 and mm9, respectively, using Bowtie2
[38] with the following parameters: -p 8 –M 1. We proc-
essed the aligned reads and filtered low quality mapped
reads using the R package spp. [39] We calculated the
binding characteristics of each factor using get.binding.-
characteristics setting srange = c(50,500) and bin = 5. We
filtered low-quality reads passing the aligned reads
through select.informative.reads and remove.local.tag.ano-
malies. We collected the remaining reads and used them
for all further analyses.

Alignment and processing of RNA-seq data files
For the human RNA-seq samples from ENCODE provided
by Cold Spring Harbor Labs, the alignments were per-
formed with STAR against hg19 and can be downloaded
here (http://it-collab01.cshl.edu/shares/gingeraslab/www-
data/dobin/ENCODE2/Public/). Other single- or paired-
end RNA-seq datasets were aligned with Tophat2 [40]
against hg19 or mm9 and the RefSeq transcriptome ref-
erence. Tophat2 was run with standard options includ-
ing –G (for the RefSeq transcriptome).
After alignment, gene FPKM values were quantified in

both human and mouse using Cufflinks2 [41] via the
cuffdiff command with the appropriate RefSeq transcrip-
tome reference file. When a sample had replicates, they
were entered jointly into cuffdiff to estimate the FPKM
for the sample as a whole. Standard options were used
otherwise.

Estimating promoter-proximal RNAP2 pausing
Calculation of PI from RNAP2 ChIP-seq data
To calculate pausing index, we adapted the procedure in
Lin et al. [13] because we found that it worked best to
capture the relevant RNAP2 ChIP-seq signal throughout
our datasets. To determine the background-subtracted
RNAP2 ChIP-seq read densities, for each annotated
RefSeq isoform we mapped the aligned and filtered
RNAP2 ChIP-seq and input reads to the TSSR (–50 bp
to +300 bp around TSS) and the gene body (+300 down-
stream of the TSS to +3 kb past the TES). See Fig. 1a
and Additional file 1: Figure S1a for a graphical refer-
ence. We removed all genes that overlapped each other,
were within 3 kb of another annotated gene, or were less
than 1 kb in length. To remove potential PCR duplicates,
we collapsed reads mapped to the same position into one.
After mapping the reads to each region, we normalized
the read density by the length of the region and by the
number of mapped filtered reads for that particular ChIP-
seq or input library multiplied by 1 million (rpm/bp).
Then we subtracted the normalized ChIP signal in each
region against the normalized input signal in each region.
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Using background-subtracted RNAP2 ChIP-seq read
densities for the TSSR and gene body of each annotated
RefSeq, we calculated pausing index (PI) as follows:

Pausing Index PIð Þ ¼ ReadCount TSSRð Þ=L1
ReadCount Gene Bodyð Þ=L2

Where L1 is the length of the gene TSSR region (al-
ways 350 bp) and L2 is the length of gene body region
(+300 bp past TSS to 3 kb past the TES of the gene).
To consolidate PI values from multiple RefSeq iso-

forms for the same gene, we selected the “optimal” iso-
form for each gene by identifying which annotated
RefSeq TSS had the strongest RNAP2 ChIP-seq signal in
the TSSR, provided it had at least 0.001 rpm/bp in the
TSSR. If no TSSR met this criterion, we searched for the
optimal TSS by finding a TSSR with a minimum fourfold
H3K4me3 enrichment (normalized ChIP/input) at the
promoter (+/– 500 bp around each annotated TSS). We
chose the fourfold threshold because H3K4me3 enrich-
ment at TSSs across the genome for multiple cell lines
was bi-modally distributed. The fourfold enrichment
threshold divided the two different modes fairly evenly
and consistently across samples. If a gene had no anno-
tated TSS that passed either of these criteria, we did not
assign it a PI value (included as part of “non-paused”). If
multiple RefSeq isoforms used the same annotated TSS,
we selected the longest annotated isoform in order to
capture all available RNAP2 signal over the span of the
gene.

Reproducibility across different laboratories/antibodies
We analyzed the reproducibility in calculating RNAP2
density and subsequently the PI across replicates, espe-
cially across different antibodies. We found that within
our broad TSSR and gene body regions that the PI
tended to strongly correlate and have a monotonic in-
creasing relationship between replicates and across dif-
ferent antibodies (see Additional file 1: Figure S2). As
such, we then ran most analyses on one of replicates
performed with the 8WG16 RNAP2 antibody (as long as
one was available).

Defining pausing and pausing gene sets
We used a minimum PI threshold of 2 to define paused
genes across datasets. There have been multiple ways of
defining the paused threshold with similar values [8, 13–15].
With our filtering procedure to remove low signal
genes, we have sufficient read density to have a high
confidence estimate of this ratio in most cases. Genes
with either PI less than 2 or no assigned PI were con-
sidered non-paused.
To determine strongly and weakly paused genes, we

grouped all isoforms across different cell types into a

single matrix with the PI from the corresponding cell
type (NA if that isoform is not used in that sample).
Within a particular sample, genes were ranked by their
PI, with NAs taking the lowest rank. Then we calculated
the median PI rank for each isoform across genes. We
assembled the list of all paused genes by identifying all
genes that were paused in at least one sample. Then
highly and lowly paused genes were generated from tak-
ing the upper and lower half of the ranked median PIs,
as long as they were also part of the all paused genes set.

Plotting each gene on a 2D graph (TSSR-gene body RNAP2
density plot)
To visualize each gene by its TSSR and gene body
RNAP2 density while also viewing its PI and a third vari-
able, e.g. gene expression, we plotted each gene with an
assigned PI on a 2D graph by its TSSR and gene body
RNAP2 density. To reduce over-plotting of data points,
we binned nearby genes using the R package hexbin,
which groups genes into 2D bins, and plotted the loca-
tion of each bin on the graph. When coloring each point
by a third variable, we calculated the mean of the third
variable for genes within the same bin and colored the
plotted point accordingly.

Additional analyses
Multiple testing correction procedure
For panels where there are more than one statistical
tests being performed, we verified that all tests passed at
least the family-wise error rate (FWER) threshold by es-
timating the Bonferroni threshold for that number of hy-
potheses/tests performed (where the alpha was 0.05). If
the p value of any test did not pass the FWER threshold,
then we did not report the p value as significant. Other-
wise, a significant p value reported is the value from the
statistical test. For panels where the number of hypoth-
eses tested was greater than 10 (e.g. GO analysis), we con-
trolled for the false discovery rate by converting p values
into q values as described in the next section.

Gene Ontology (GO) enrichment analysis and cancer gene
overlap
Biological process GO enrichment analysis was performed
using the topGO Bioconductor package (http://www.bio
conductor.org/packages/release/bioc/html/topGO.html).
GO annotations were based on the org.Hs.eg.db Biocon-
ductor packages for human. All tests were performed
using all RefSeq genes. P values were calculated from the
set of enriched GO terms using Fisher’s exact test. For
each sample, p values were converted into q values using
the qvalue Bioconductor package using default parameters
over the range of all tested GO terms.
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Calculating sequence composition enrichment
We analyzed the sequence content around the promoter
(±500 bp around TSS) using the UCSC hg19 or mm9 se-
quence assembly, as appropriate. For genes with a PI, we
used their assigned primary RefSeq annotated TSS. For
remaining genes, we assigned each the first annotated
RefSeq TSSs. For the GC and CpG ratio analyses, we
first corrected the RNAP2 TSSR density for genes with
an assigned PI by the GC content within the TSSR
(–50 bp to +300 bp around TSS) from the appropri-
ate assembly. We corrected the TSSR RNAP2 density
by fitting a smooth spline from the TSSR percent GC
content to the log10 TSSR RNAP2 density. We then
generated the predicted log10 TSSR RNAP2 density
from the fitted model and subtracted it from the
measured log10 TSSR RNAP2 density such that GC
content and TSSR RNAP2 density no longer corre-
lated. We then recalculated the PI for genes with an
assigned PI using the corrected TSSR RNAP2 density
as otherwise described in Section 2 of the Supple-
ment and also recalculated the sets of strongly and
weakly paused genes across all human and mouse
samples with the updated PIs. Using these corrected
PIs and gene set for this analysis, we then calculated
the percent GC content and CpG ratio of each pro-
moter region. The CpG ratio was calculated as:

N ¼ Promoter Length ¼ 1000 bp

CpG Ratio ¼ Number of CG and GC dinucleotides=N
Number of Cs=N � Number of Gs=N

After calculating and gathering the distribution of
percent GC content and CpG ratio values for the dif-
ferent gene categories, they were compared using the
Mann–Whitney U test.
For the sequence enrichment analysis, all paused genes

were used in this analysis in their original, uncorrected
form (as correcting for GC content in the TSSR region
had minor effect on the result, data not shown). We
generated all 5- and 6-mers for the standard DNA bases.
For each n-mer, we counted its occurrence in the pro-
moter region in paused remaining genes. Then we com-
pared the distribution of counts using the Mann–Whitney
U test. To estimate an enrichment score to order the
over-representation of n-mers in paused or non-paused
gene sets, we used the –log10 p value of the Mann–Whit-
ney U test. If the distribution of counts was greater for the
paused genes, we gave the p value a positive sign. Other-
wise, we gave the p value a negative sign. (A positive sign
if no difference was detected.) Each n-mer was plotted in
order by their enrichment score, with percent GC content
and the presence of a CpG and/or TATA in the n-mer
(both binary values).

Paused versus non-paused expressed genes
For each analyzed cell type, we collected genes with
cufflinks-processed FPKM value greater than or equal to
1. Among these genes, those with PI >2 were defined as
paused and the rest were non-paused. For the single-cell
variability analysis, we used the separate single-cell
RNA-seq data with their corresponding cufflinks-
processed FPKM values for each cell in both replicates
of GM12878 [18] and H1 [19]. Expressed genes were
those with mean FPKM across individual cells of at least
1. Paused and non-paused states were assigned based on
GM12878 and H1 RNAP2 ChIP-seq data, as described
above. We divided expressed genes into 20 % quantiles
(using R’s quantile function with default parameters) by
their mean FPKM value. For paused and non-paused
genes in each quantile, we calculated the coefficient of
variation (SD/mean) of each gene across all individual
cells in a population and tested whether the coefficient
of variations distributions were different between paused
and non-paused genes by the Mann–Whitney U test.

PI-expression trend modeling
For the RNAP2 TSSR, gene body, total density, or PI to
gene expression analyses, we used Spearman correlation
given the non-linear distribution of data points. Individ-
ual trend lines were calculated using a smoothed cubic
spline (via smooth.spline function in R) with no preset
degrees of freedom. Quantile trend lines were generated
by calculating a running 25 % and 75 % quantile (using
runquantile from the R package catools) followed by
smoothing. To accommodate regions of low sample
density, the maximum or minimum values were set to
be no higher or lower than the mean trend line.
The aggregate plot of multiple cell types was also cre-

ated using cubic splines but using a low degree of free-
dom (df = 4) to emphasize the hill-shaped pattern that
described the vast majority of the trend rather than the
variability in the extremes.

Inflection point analysis
We estimated the trend curve between TSSR and gene
body RNAP2 density by modeling the smooth spline be-
tween the two variables using smooth.spline with default
parameters. We estimated the trend line on the log10
scale, to highlight the rapid uptick at the high TSSR
RNAP2 density. We could visualize the inflection point
on the TSSR-gene body RNAP2 plot, and estimate the
TSSR RNAP2 density by calculating the maximum sec-
ond derivative value using the predict function.

Stimulus responsive analysis
Using cufflinks-generated FPKM quantification of gene
expression levels, we calculated responsive gene sets
based on FPKM fold-change relative to baseline (e.g.
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Hour 0). We filtered out any genes that did not have a
FPKM of at least 1 in any of the time points available for
a dataset. We divided the responsive genes into the fol-
lowing groups: early, minimum twofold increase in
FPKM within 1 h post stimulation; late, minimum two-
fold increase in FPKM in the later time points and not
within the first hour; downregulated (down), minimum
twofold decrease in FPKM in any time point; or non-
responsive, expressed throughout the time course but
never any twofold expression change. The “responsive”
gene category was the aggregate of early, late, and down-
regulated genes for a particular time series dataset.
To test for significant differences between responsive

and non-responsive genes at baseline, we compared the
PI distribution of genes in each category in the unstimu-
lated state using the Mann–Whitney U test. To test for
significant changes in the PI distribution over time, we
compared each non-baseline time point to baseline using
the Mann–Whitney U test. There were many more non-
responsive genes than responsive genes, so for statistical
testing we subsampled a number of genes equivalent to
the total number of responsive genes from each time point
in the dataset.

Chromatin structure analysis
To calculate enrichments for chromatin features, we
calculated the fold-enrichment for ChIP reads over in-
put reads, with each normalized to their respective
number of mapped reads. For analysis of correlation
between each chromatin mark and gene PI, we calcu-
lated input-subtracted ChIP read density at each pro-
moter (±500 bp around the TSS) that matched the
optimal RefSeq used for the PI calculation (see “Calcu-
lation of PI from RNAP2 ChIP-seq data” above). We
estimated the chromatin enrichment, positive or nega-
tive, for PI by training a multi-dimensional linear model
on each of the log2 estimated enrichment ratios for
each chromatin mark studied (e.g. H2A.Z) to predict
the log2 PI value for each gene. Each linear model was
trained on each cell type displayed in Fig. 5a individu-
ally. The coefficients of the linear model were used to
plot the matrix in Fig. 5a. In Additional file 1: Figure
S11A, we performed the same analysis, but included
the gene expression level (measured from RNA-seq
data in FPKM on the log10 scale) as another variable
within the model.
To calculate the average density profiles, we binned

genes into 25 % quantiles either by their PI or gene ex-
pression level, as indicated by the particular graph. We
mapped reads for genes within each quantile to 50 bp
bins (or 10 bp bins for the MNase nucleosome density
analysis, since it was more deeply sequenced) around
the TSS and estimated the mean read density per bin
normalized to the library size times 1,000,000 reads

(reads per million). All profiles were smoothed in a simi-
lar way, by passing span = 0.1 to the loess function in R.

Data access
New high throughput data in this manuscript are available
at Gene Expression Omnibus (GEO) under accession code
GSE60872 or on the Cardiovascular Development Con-
sortium server at: https://b2b.hci.utah.edu/gnomex/. The
accession codes for new and previously published high
throughput data are listed by sample in Additional file 2:
Table S1.
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Figure S2. Robustness of RNAP2 pausing calculations. Figure S3.
Pausing across cell and tissue types. Figure S4. Correlation between
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between whole gene, TSSR, and gene body RNAP2 density and PI to
gene expression for GM12878, H1, K562, IMR90, HUVEC, and HepG2 cells.
Figure S6. Grouping paused and non-paused genes by mean popula-
tion-wide expression shows no consistent expression level difference within
quantile. Figure S7. Effect of extracellular stimuli on RNAP2 pausing. Figure
S8. Relationship of gene expression to TSSR and gene body RNAP2 density
and to PI. Figure S9. The inflection point does not appear to be driven by a
limit to the level of initiating RNAP2. Figure S10. Nucleosome positioning
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